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Abstract. The impact of a water jet onto a water surface can entrain air-bubbles whose pulsations provide acoustic
sources. Such impacts can occur during the breaking of a wave, or on a smaller scale, when a raindrop strikes a
puddle of water. A better understanding of this phenomenon can lead to improved characterizations of the ambient
noise and acoustic detection algorithms. Liquid on liquid impacts correspond to a breakdown of classical hydro-
dynamic theory which assumes that the free surface remains smooth and topologically invariant. A computational
model using a generalized theory of hydrodynamics designed to rigorously treat liquid collisions is described in
this paper. Numerical simulations are compared to experiments of a liquid cylinder impacting a still-water surface
The simulations provide details not only of the initial formation of the air-entrained bubble at the time of the cavity
collapse, but also the subsequent pulsations of this bubble until it rises back to the free surface. Computed initial
bubble sizes and natural frequencies are compared to the experimental results for different cylinder lengths.
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1. Introduction

One of the most familiar examples of liquid impacts is the breaking of an ocean wave. The
bubbles formed during this violent motion create phenomena important in many different
fields. As described in [1] and [2] applications include global climate modeling through
the enhanced absorption of gases across the ocean surface or the release of marine aerosols
into the atmosphere. Another potential application is the enhancement of acoustic detection
algorithms through improved characterization of the ambient noise. This application, in partic-
ular the characterization of low-frequency noise caused by air entrainment in breaking waves,
provides the motivation for this study. While a direct simulation resolving all the turbulent
scales of wave breaking is not feasible, we begin with an idealized experiment of a falling
cylinder of water onto a still water surface.

The experimental setup described in [3] is displayed in Figure 1. In particular, the case
when R = 5·4 cm, H = 15 cm, will be considered with lengths ranging from L = 15 cm to
L = 45 cm. In the experiments, Kolaini et al. [3] measured the pressure time history at a fixed
location under the water and determined the resonant frequencies of the bubble. It was found
that the frequency was inversely proportional to the initial bubble plume radius. Numerical
predictions of these experiments have been reported in [4] using a boundary-element method
(BEM). While this procedure was able to accurately predict the initial bubble size, it was
unable to simulate the subsequent bubble pulsations and hence dominant frequency of the
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Figure 1. Experimental setup of a liquid cylinder above still water.

bubble. The reason for the failure of the BEM on this problem is due to the many topolo-
gical changes occuring during the bubble pulsations. Each topology change is associated with
different portions of the free surface colliding, and each collision causes a singularity in the
BEM which must be carefully treated (see e.g. [5] or [6]). These methodologies for removing
singularities are dependent on a priori knowledge of the nature of the topology change. While
it may be possible to use a BEM past the time of the initial cavity closure, (to our knowledge,
this has not yet been done for this problem) simulating the subsequent jetting, splitting, and
re-merging of the bubbles while they are pulsating is not feasible with that approach.

A detailed numerical investigation of the related problem of impacting drops was per-
formed in [7] using a Volume of Fluid (VOF) approach. Unlike the method in [4], this ap-
proach was able to predict thin high speed jets that often form on the collapse of the cavity.
However, their model did not include a treatment of the air entrained in the bubble, and
consequently, was unable to simulate bubble pulsations.

A generalized formulation of hydrodynamics capable of treating the singularities caused
by liquid collisions is used in this study. While this approach may be classified as a VOF
method, there are some important differences which are discussed in the next section. Details
of the model and its numerical implementation may be found in [8–11]. The computer code
implementing this model for both axially symmetric and two-dimensional problems is called
BUB2D. A separate code, BUB3D is used for three-dimensional problems. One of the bench-
marks for validating this model was the collision of two incompressible liquid cylinders. This
benchmark was discussed in detail in [11] and [12] for concentric cylinders with the same
radii, and with cylinders of different radii in [13]. Other applications of these codes include
underwater bubble dynamics, shallow-depth plume formation [13–15], explosive cratering in
water-covered sand [16] and [17], and preliminary results in wave breaking [17]. In general,
the strength of this approach is the ability to simulate long-time violent free-surface phenom-
ena, such as those encountered when a bubble undergoes multiple oscillations. Its weaknesses
include its first-order accurate representation of the free surface, which can become slightly
smeared due to numerical effects, even during stable motions.

Whereas the previous attempts of [4] and [7] have only been able to address the early
stages of this cylinder-impact problem, simulations of both the air entrainment and sub-
sequent bubble pulsations are presented in this paper. The simulated bubble sizes and pulsation
frequencies are compared to the experiments of [3].
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2. Model description

The generalized hydrodynamic model is based on a constrained system of conservation laws.
The equations are

(ρu)t + ∇ · (ρuu) = −ρgk − ∇P, (1)

ρt + ∇ · (ρu) = 0, for x ∈ �, (2)

subject to the constraint

ρ ≤ ρ0. (3)

In this formulation the density acts as a volume of fluid variable and the liquid region is defined
by D(t) = {x ∈ � : ρ(x, t) = ρ0}. In each connected, disjoint subset of the non-liquid region,
�−D(t), the pressure is assumed to be uniform. For example, in the atmospheric region above
the liquid the pressure is set to the ambient air pressure. In an underwater bubble, the pressure
PB may be determined using the adiabatic law PB = CVB

−γ , where VB is the bubble volume,
C is a constant, and γ is the ratio of specific heats of the bubble gases. Since the pressure
is continuous in the absence of surface tension and viscosity, these values can be treated as
boundary conditions for determining the pressure in D(t). Note, that this formulation allows
for regions of ‘spray’ in the non-liquid region where 0 < ρ < ρ0. Such regions are not
allowed in potential flow formulations such as the one used in [4] and the references cited
therein, where the flow is assumed to be delineated so that either ρ = ρ0 or ρ = 0. They
are also suppressed in the VOF methods described in [18], [19] and [7], among others, where
the fluid volume variable is constrained to take values from the discrete set {0, 1}. Regions
of spray can be expected to form when the free surfaces become unstable, in particular when
Rayleigh-Taylor instabilities occur. Since these instabilities often occur during violent free
surface dynamics, we do not a priori suppress spray regions through the use of any type
of surface-tracking or special level-set approaches. Furthermore, while the liquid region is
assumed to be incompressible due to the constraint (3), no additional irrotational assumption
is made.

Solutions to the constrained system (1)–(3) are approximated using a split step algorithm
which advances the flow variables ρn, un, P n at time tn, to the flow ρn+1, un+1, P n+1 at time
tn+1 = tn + τ .

The first step of the algorithm solves (1) and (2) approximately, without the pressure gradi-
ent in the momentum equation and without regard to the constraint (3) for the time τ , yielding
a flow (ρ̃, ũ). In the continuous (in space) algorithm, the solution to these equations may be
approximated by the solution to a ‘collisionless Boltzmann equation’ as described in [13].
Numerically, this step is approximated using a second-order, monotone-upwinded Godunov
method where approximations to the discrete Riemann problems are consistent with inelastic
collisions when characteristics cross. Details of this algorithm for axially symmetric prob-
lems were given in [11]. The monotonicity of this scheme has the effect of implicitly adding
artificial viscosity in regions where the velocity gradients are rapidly changing. A discussion
of how such algorithms may be considered as Monotone Implicit Large Eddy Simulations
(MILES) for the treatment of turbulence may be found in [20] and [21].

The second step of the algorithm redistributes the excess of ρ̃ over ρ0 and corrects the velo-
city field ũ such that mass and momentum is conserved, and the energy cannot increase. This
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step represents another distinguishing feature of our model from the VOF models previously
mentioned, which simply truncate any excesses. In addition to violating mass conservation,
such strategies will in general violate momentum conservation and can lead to small energy
increases. The excess density is redistributed by setting

ρn+1 = ρ̃ + ∇2H, (4)

where H > 0 is the solution of the ‘obstacle problem’

∇2H =
{

ρ0 − ρ̃ if H > 0
0 if H = 0

. (5)

Note that (5) and (4) imply that ρn+1 ≤ ρ0 in the entire domain.
Associated with the density redistribution the velocity (momentum) is redistributed by

solving

ρn+1u = ρ̃ũ + ∇2(uH). (6)

This redistribution strategy was derived by considering the steady state solution to a ‘Stefan-
Boltzmann’ equation. A description of this derivation may be found in [13]. A discretization
of (5) yields a discrete linear complementarity problem. This nonlinear system is solved using
a constrained conjugate gradient method with diagonal or incomplete Choleski precondition-
ing. Details of this algorithm were presented in [11]. The momentum-redistribution equation
(6) is first transformed to a symmetric self-adjoint (but degenerate) linear equation which is
efficiently solved by a diagonally preconditioned conjugate gradient method. For classical
fluid flows without collisions, the redistribution step will generate corrections which are of
higher order in τ and may be omitted. However, these corrections can become significant in
problems with collisions, as demonstrated in [12] for colliding liquid cylinders.

In the liquid region (ρ = ρ0) the additional requirement is implicitly imposed, namely,

dρ

dt
= ρt + u · ∇ρ ≤ 0. (7)

Together with (2), this is equivalent to requiring that

∇ · u ≥ 0 when ρ = ρ0. (8)

This constraint is imposed through the use of the pressure as a Lagrange multiplier. The
velocity un+1 is given by

ρn+1un+1 = ρn+1u − τ∇P, (9)

where the pressure P solves the variational inequality

τ∇ 1

ρn+1
∇P =

{ ∇ · u if P > Pc

0 if P = Pc

. (10)

Note that (10) and (9) imply that un+1 satisfies (8) when ρn+1 = ρ0. This formulation allows
for incipient cavitation regions, where ρ = ρ0, P = Pc and ∇ · u > 0 so that ρt < 0. In cases
where P > Pc so that cavitation is not expected, the inequality in (8) becomes an equality and
(9) represents a projection of u onto the space of divergence free velocities. In this case (10)
becomes a linear Poisson equation instead of a nonlinear ‘obstacle’ problem. In either case
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the equation is discretized with a finite-element method using either bilinear elements in 2-D
or tri-linear elements in 3-D. A structured but generalized grid is used in the 3-D code so the
discretization matrix has a simple banded structure. An incomplete Choleski preconditioner
is used with the conjugate gradient method to solve the linear system. The same algorithm
described above for the density redistribution is used when we impose the pressure constraint
for problems where cavitation effects are important.

In the numerical implementation of the generalized hydrodynamic model the new discrete
liquid region Dn+1 = D(tn+1) is defined to be the collection of grid cells Cl such that

ρn+1
l ≥ (1 − ερ)ρ0, (11)

where 0 < ερ < 1. (Note that in our discretization the density and velocity field are defined at
the grid cell centers while the pressure is defined at the grid vertex points.) In general, small
values of ερ will cause cells with only slightly less density than the liquid to be treated as
regions of ‘spray’ having uniform pressure. Larger values of ερ will cause a larger subset of
the region where 0 < ρ < ρ0 to be treated as a variable density incompressible region. For all
of the computations presented here the value ερ = 0·1 was used.

The discrete non-liquid region is divided into evolving disjoint subregions

� − Dn+1 = An+1 ∪ Bn+1 ∪ Cn+1, (12)

where the ‘bubble’ domain is further split into connected components

Bn+1 =
Kn+1⋃
k=1

Bn+1
k . (13)

The non-liquid subregions are evolved at each step by checking each cell using (11). For
example, consider a cell Cl ∈ Dn but Cl �∈ Dn+1. If Cl is adjacent to one of the non-liquid
regions from the previous step, then it is merged with that region. If it is not adjacent to any
non-liquid region and P n = Pc then Cl is included into the cavitation region Cl ∈ Cn+1.
Inside the air and cavitation regions, A and C, the pressure is assumed to be both uniform and
constant in time (Pa and Pc, respectively). Since the bubble pressures depend on the volume
by an adiabatic law, the individual bubble volumes must be updated at each time step. The
volume V n+1

k for bubble Bn+1
k is given by

V n+1
k =

∑
Cl∈Bn+1

k

(
1 − ρn+1

ρ0

)
dl, (14)

where Bn+1
k is the region Bn+1

k together with all cells adjacent to Bn+1
k , and dl is the volume

of cell Cl divided by the number of bubbles adjacent to Cl.
At times where the free surface topology is not changing, the bubble pressures are then

updated using the adiabatic assumption

P n+1
k

(
V n+1

k

)γ = P n
k

(
V n

k

)γ
, (15)

The value γ = 1·3 was used for the simulations shown in this paper. This value was selected
because it is between typical values given for water vapor γ = 1·25 and air γ = 1·4 and the
bubble is assumed to be a mixture of these two gases. The values γ = 1·25 and γ = 1·4 were
also tested in simulations but had a relatively small effect on the computed bubble frequencies.
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Special algorithms are used in the codes to keep track of bubbles which may merge or split off
as well as the treatment of the pressures of merging or splitting bubbles. The details of these
treatments have appeared in [22] and [14].

While the computational procedures implemented in the code are second-order accurate
in space and time, only first-order accuracy can be expected in determining the locations of
the free surfaces since they are captured as discontinuities in density. This first-order rate of
convergence has been observed in computations of maximum bubble size, period, and energy
losses due to impacts of concentric liquid cylinders in several of the references previously
mentioned, e.g. [11], [12] or [17].

3. Numerical results

We began our numerical studies approximating the setup shown in Figure 1 as an axially
symmetric problem so that the code BUB2D could be used. Three different grid resolutions
were used in order to examine grid effects and the numerical accuracy of the simulations. In
each case a uniform grid was used in the region 0 ≤ r ≤ 3R, −9R ≤ z ≤ 0·4R, where
z = 0 corresponds to the initial air-water surface. Outside of this region the grid is stretched
exponentially in the radial direction to r = Rt = 118·48 cm, down to z = ZB = −180 cm
and upward to z = zT = 100 cm, roughly matching the volume and depth of the tank used
for the experiments. The cell stretching was performed under the restriction that the ratio of
the largest spacing to the smallest was no greater than 20 to 1 in each direction. As mentioned
earlier, we will focus on the case where the cylinder has radius, R = 5·4 cm, and initial height
above still water, H = 15 cm. In the discussion that follows all distances are measured in
units of centimeters (cm) and time is in seconds.

A summary of the grid and simulation parameters for the L = 45 case are given in Table 1.
The simulations were initialized with the cylinder of water at a height s0 = 0·108 cm above
the air-water surface, with a velocity specified from its free-fall motion. That is, if the rest
configuration shown in Figure 1 corresponds to t = 0, we started our computation at time
t0 = √

2(H − s0)/g with the cylinder moving downward with velocity v0 = −gt0 . The
simulations were run to time t = 1·5. These runs were performed on a Intel Xeon 1.7 GHz
processor using the Portland Group Fortran compiler with options (pgf77 -fast -byteswapio).
In this table, h is the grid size in the region of interest, τ is the time step, and Nr and Nz are
the total number of grid cells used in the r and z directions, respectively. For these simulations
it can be expected that the execution times would increase by a factor of 16 with each level of
refinement. Each refinement level doubles the number of time steps, quadruples the number
of cells, and roughly doubles the number of iterations required for the convergence of the
solutions to the obstacle problem (5) and pressure equation (10). The execution times listed in
Table 1 indeed show an increase by roughly the factor 16 with each refinement.

Figure 2 displays the fine-grid free-surface shapes for the L = 45 case at different times
in the experiment. At time t = 0·2 the cylinder has impacted the water surface and a radial
plume begins to form around the impact area. This impact phenomenon was studied in detail
in [13] where it was shown that just after the impact the liquid velocity behaves asymptotically
as d−1/3 where d is the distance to the circle on the boundary of the cylinder bottom at the
moment of impact with the still water.

Due to the incompressibility assumption and the additional implicit assumption that liquid
collisions are inelastic, an energy loss occurs due to the singularity at the moment of impact.
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Table 1. Summary of grid parameters and run times for the L = 45
case

Grid h τ Nr × Nz Run Time

(hrs:mins:secs)

Coarse R/10 4 × 10−4 46 × 144 00:10:54

Medium R/20 2 × 10−4 92 × 288 03:20:42

Fine R/40 1 × 10−4 184 × 576 48:26:35

If tI = √
2H/g is the time of impact, and VI = gtI is the speed of the cylinder an instant

before the impact time (tI
−), then the energy loss is given by

E(tI
−) − E(tI

+) = πVI

∫ R

0
rI (r, 0)dr, (16)

where ∇I (r, z) is the pressure impulse imparted to the momentum, and solves the equation

∇2I = −ρ0VIδ� in D(tI ), (17)

I = 0 on ∂D(tI ), (18)

with δ� denoting the Dirac ‘delta’ distribution on � = {(r, z) : z = 0, 0 ≤ r ≤ R}, the disk
of intersection of the cylinder with the quiescent surface. The energy loss in this case was
computed to be 0·01249E(tI

−) = 0·001249Mg(H + L/2). That is, the energy loss is only
approximately 1.25% of the initial potential energy of the water cylinder upon its release. Fur-
ther discussions on energy losses due to liquid impacts can be found in [23] and the references
cited therein. Compressibility effects on fluid impacts, in particular the use of linear acoustics
to radiate pressure waves have been studied in [24]. For the case of a triangular wave impact,
Cooker [23] used the method of Korobkin [24] to show that the time-averaged compressible
velocity field is the same as that predicted by the incompressible pressure impulse theory. This
result provides additional justification of the incompressible energy loss described by (16–18)
which in turn, is implicitly reproduced by our algorithm.

After the impact, the cylinder opens a cavity as it descends into the water surface at times
t = 0·3 and t = 0·4. The cavity can be seen collapsing at time t = 0·46 and at time t = 0·47
the cavity has closed “pinching off” a bubble. As mentioned in the preceding section, at the
moment the bubble is formed, the pressure in the cavity is taken to be the ambient air pressure.
Afterwards, the bubble’s volume is updated based on the fluid motion and the pressure is
determined using the adiabatic assumption (15). At times t = 0·47 and t = 0·48 small water
jets can be seen moving both upward into the air and downward through the bubble. This
phenomenon has been visualized in high-speed photographs of the experiment shown in [3].
The re-entrant jet pierces the bottom of the bubble at t = 0·5 causing the bubble to change
topology to a torus at time t = 0·6. A second smaller toroidal bubble, formed as the jet travels
downward, can also be seen at t = 0·6. The bubble is rising at t = 0·7 and vents into the air
at t = 0·9. At time t = 1·37 several small bubbles remain in the flow field as the upper jet
has fallen back down. Note the light-gray regions which can be observed inside the bubble at
times 0·47 ≤ t ≤ 0·7. These are regions of simulated spray, which develop near the top of
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Figure 2. Fine grid BUB2D simulation of the L = 45 cylinder impact.

the bubble just before the cavity collapses, and are maintained at each bubble pulsation due to
Rayleigh-Taylor instabilities at times when the bubble is near its minimum volume.

Photographs extracted from a video of the L = 45 cylinder-impact experiment conducted
in an external environment at the Puget Sound [25] are shown in Figure 3 for comparison.
The later time images from this video show a significant divergence from axial symmetry due
in part to the non-ideal experimental conditions and the unstable nature of the phenomenon,
and are not displayed here. The formation of the cavity after the cylinder impacts the air-
water surface and the bubble pinch-off are clearly displayed in these photographs. A much
more detailed description of this experiment, including images of the cylindrical jet of water
above the quiescent surface may be found in [4]. As mentioned previously, high-speed video
photographs were presented in [3] showing further details of the bubble formation.

Details of the bubble at a time of 1 ms after the cavity collapses are shown in Figure 4 for
each of the 3 grids. The lines delineating the free surface and bubble are density contours with
ρ = {0·1, 0·3, 0·5, 0·7, 0·9} (where ρ0 = 1). Velocity vectors are drawn in every fourth cell
on the coarse grid (a), every eighth cell on the medium grid (b) and every sixteenth cell on
the fine grid (c). On each grid the bubble and air-water surface has approximately the same
shape and the velocity vectors are similar. As expected, the contours become sharper as the
grid is refined with the exception of the contours on the top (unstable) surface of the bubble
which show spreading on each grid. The small ‘bump’ shown on the bottom of the bubble in
the Medium and Fine grid cases were caused by a small bubble entrained during the initial
cylinder impact, which rises to the cavity bottom just before it closes. The similarity of these
profiles indicate that it is possible to obtain qualitatively realistic simulations using modest
computer resources. This will become important in 3-D simulations where the computational
requirements are typically 2 to 3 orders of magnitude greater.
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Figure 3. Photographs from video of experiment conducted at Puget Sound for the L = 45 case.

Figure 4. Density contours and velocity vectors just after bubble formation.

The quantitative results for the three simulations are shown in Table 2 below. In this table,
tc is the time the cavity collapses, Rb is the equivalent radius of a sphere with the same
volume of the bubble at the instant it is created, Rc is the maximum radial extent of the cavity,
D is the depth of the cavity at the time of collapse. Also, f10 corresponds to the average
bubble frequency during its first 10 pulsations, and f corresponds to the frequency of the
maximum power spectrum level. The theoretical values listed in Table 2 were computed using
[4, Formulae 2,10,14,16 and 25]. (Note, that in [4], time is measured from the time of impact,
while we started with the time the cylinder begins to fall). These formulas, together with the
determination of the Froude number, F are listed below for convenience.

F = L

R

(
1 + 2

H

L

)
, tc = 6F−1/6(R/g)1/2, (19a)

Rb = 31/3F 1/9, Rc = √
3R, D = 3RF 1/3 (19b)

The range of values for tc determined from the experiments were approximated from [4,
Figure 11]) for the case when L/R = 81

3 . Similarly the range of values for the data for Rb, Rc,
and D, were approximated from the data presented in [4, Figures 15, 9, and 12, respectively].

With the exception of the cavity collapse time tc, where the Coarse and Fine grid values
differ by less than 1·3%, the difference in the computed quantities from the Fine and Medium
grids were smaller than between the Medium and Coarse grids, indicating the computations
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Table 2. Summary of results from simulations with L = 45

Grid tc Rb Rc D f10 f

Coarse 0·4697 8·31 10·15 28·88 51·8 51·5
Medium 0·4675 9·33 11·19 28·49 46·3 46·1
Fine 0·4640 9·91 11·63 28·22 44·4 43·8
Theory 0·4621 10·43 9·35 38·94

Exp. Data Min 0·43 7·3 9·2 27·2 47·6 43

Exp. Data Max 0·50 11·5 11·9 42·8 46

Figure 5. Computations (bottom) and measurements (top) for the L = 45 case.

are converging. All of the computed values are within 2% of the theoretical value for tc,
which itself is close to the average value from the experiments. The computational errors for
the value Rb are approximately 5·5%, under the assumption that the values are converging
with the same rate that the grid size is decreasing. Extrapolating the Fine grid result would
yield an approximation of Rb = 10·49, which is very close to the theoretical value. While the

Figure 6. Computations (bottom) and measurements (top) for the L = 15 case.
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Figure 7. Computations (bottom) and measurements (top) for the L = 25 case.

Figure 8. Computations (bottom) and measurements (top) for the L = 35 case.

theoretical value for Rc is within the measured data, it was noted in [4, p. 191] that the estimate
Rc = 2R = 10·8 provided a better match to the data. Here, the computations indicate an ex-
trapolated value of approximately Rc = 12·07, which is slightly larger than the observations.
The cavity depths appear to be on the shallow side of the measured data and well below the
theoretical value. The computations using the boundary-integral method in [4] also predicted
cavities shallower than those observed. The value, 43 Hz for the fundamental frequency of
the pulsating bubble was reported in [3], as well as a bubble radius of Rb = 11·21 cm. In
an earlier note [26] reported the frequency 46 Hz and a bubble radius of 10·2 cm. These two
sources were used for the bounds on the fundamental frequency.

Figure 9. Density contours and velocity vectors for L = 15 run.
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Table 3. Summary of results from simulations with varying water
lengths L

L tc Rb Rb(data) f10 f f (data)

15 0·4250 0·55 1·35 781 171 415

25 0·4510 1·14 4·19 344 348·8 209

35 0·4706 5·50 8·53 75·1 76·9 54

Figure 10. Formation of secondary bubble during jet fall back in L = 15 run.

The pressure time history and power spectrum levels are shown in Figure 5 together with
the experimental results taken from [3, Figure 4]. The pressure measurements were taken
at the location r = 40 cm, and z = −20 cm. This distance is sufficiently close to the
bubble so that the instantaneous propagation of pressure due to the incompressible liquid
assumption provides an adequate approximation to the small physical propagation time. In
this figure the label ‘(1)’ from the experimental pressure time series corresponds to the time

of the initial impact which would correspond to the time t =
√

2H
g

= 0·175, so that the two

plots have approximately the same time scale. The value for f10 listed in the ‘Exp. Data Min’
row of Table 2 was approximated from the experimental results of [3, Figure 4(a)] copied
in the upper left graph of Figure 5. The rate of decay of the amplitude of the low-frequency
bubble is slightly faster in the computations than in the experiments. This decay occurs in the
computations from energy losses due to repeated liquid collisions of water jets forming during
the bubble pulsations, as well as numerical dissipation. The spectral level profiles show some
similar features, namely, the peak occurring at the fundamental frequency, as well as a lower
secondary peak occurring at approximately 180 Hz from the computed data and about 130 Hz
in the experimental data, due to the fallback of the plume rising above the air-water surface.

Figure 11. Density contours and velocity vectors for L = 25 run.
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Figure 12. Density contours and velocity vectors for L = 35 run.

Next, we turn our attention to cases when the cylinder is shorter, namely L = 15, L = 25
and L = 35. Computations for these three cases used a grid with uniform spacing of size
h = 0·1 cm in the region 0 ≤ r ≤ 12 cm, −5 cm ≤ z ≤ 4 cm with grid stretching to the same
boundaries as in the L = 45 case. The number of cells for this grid was 200×520. Figures 6–8
display the computed pressure time series and power spectrum levels for these cases together
with the measurements of [3]. While there are quantitative discrepancies in the frequency
predictions, the qualitative agreement of both the time series and power spectral levels in
each case is evident. For example, the persistence of the low frequency bubble pulsation in the
L = 35 case is not retained in the L = 25 or L = 15 case. The matching of pressure amplitude
decay reflects the credibility of the liquid collision energy dissipation mechanisms within our
generalized hydrodynamic theory. The similarity in the persistence of the oscillations between
the measured and computed time series is remarkable.

Figure 9 shows the contour plots for the L = 15 run at various times. The cavity is at its
maximum extent at time t = 0·37. The shape of the cavity just before it collapses occurs at
t = 0·42 and the formation of a small bubble and upward jet just after the collapse are seen at
t = 0·43. Note that the cavity closes in from the bottom and sides at roughly the same speed
so that only a very small bubble is formed. The small size of this bubble and the relatively
fast closure of the cavity make quantitative predictions of this case difficult. At a later time
the fallback of the jet causes another bubble to form as shown in Figure 10 at times t = 0·92
and t = 0·93. This bubble is larger, having an initial radius of 2·17 cm and oscillates with a
frequency of f = 171 Hz, which is the value listed as the fundamental frequency in Table 3.
This event was also recorded in the data, and is marked by the label ‘(3)’ in corresponding
pressure time series shown in Figure 6.

Contours for the cases L = 25 and L = 35 are shown below in Figure 11 and Figure 12. As
before, these figures show the contours of the cavity near its maximum extent, and just prior
and after the cavity collapse. Figure 11 shows that in the L = 25 case the cavity closes at a
point just above its bottom causing the complex shape seen at t = 0·45. As in the previous
case a small high frequency bubble is formed whose energy is quickly dissipated through
subsequent oscillations. The case L = 35 is very similar to the case L = 45 described above
with the exception that the bubble is smaller and pulsates at a higher frequency. Note the
unstable nature of the bubble shown at time t = 0·48 where a water jet is piercing the bubble
through the axis, while a second radial jet is penetrating the upper corner. The lack of a sharp
outline of the bubble indicates the violent and unstable nature of the bubble pulsations.

A summary of the results is shown in Table 3. In this table the value for Rb is the equivalent
radius of the bubble formed at the time of the cavity collapse, where its volume is determined
from (14). The measured values for Rb were reported in [3] and correspond to the radii of a
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spherical region encapsulating the bubble shape. Void fractions for this region were estimated
to range between 32% to 73%, so that the values for Rb(data) in the table should be reduced
by factors between 0·68 and 0·9. In these cases the computations predicting frequencies
significantly higher than the measurements reported here. However, there was a significant
spread in the relation between the measured frequencies and bubble plume radii in the higher
frequency regime, (frequencies larger than 100 Hz) so that the L = 15 and L = 25 data
may be particularly difficult to duplicate. However, this does not explain why our errors in
frequency in the L = 35 case were so much larger than in the similar L = 45 case.

4. Conclusions

In this paper we demonstrated that it is possible to predict not only the formation of bubbles
formed as the result of liquid impacts, but also the acoustic sources that these bubbles produce
as they undergo damped low frequency pulsations. While fairly high resolution (40 cells across
the jet diameter) was required to produce frequencies within the range of the experimental
data, coarser grids produced results which were qualitatively correct and frequencies within
about 15% of the measurements. This is significant because it indicates that 3-D simulations
which generally require two or more orders of magnitude more computer resources, are still
feasible for simulating realistic jet impact behavior. While our success was not great in pre-
dicting frequencies of bubbles when the water jets were shorter, good qualitative agreement
between the computed and measured pressure time series was found, in particular, the per-
sistence and decay of the pressure amplitudes. The dominant frequencies were higher in the
computations in these cases, but the general structure of the power spectrum level peaks was
reproduced.
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